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Abstract ​This article replicated the experiments presented in Sutton (1988), which describes a novel 
method of machine learning via temporal differences. The obtained results were not identical to the original 
article, but reproducibility was confirmed by comparison of core concepts. 
 
Index Terms ​— incremental learning, machine learning, prediction, replication, temporal difference 
 
 

I. I​NTRODUCTION 
Sutton’s article presents a novel method of prediction for problems with dynamical states. Predictions are                

given in the form of a vector of weights (​w​), which updates over time steps (​t) via the update rule expressed                     
in Equation 1: 

 ww ← w + ∑
m

t=1
Δ t  (1) 

 is most fully expressed in Equation 4:wΔ t  

 
w (P ) ∇ PΔ t = α t+1 − P t ∑

t

k=1
λt−k

w k  (2) 

where is the learning rate,  is the active prediction value at time ​t​, represents the trace decay, andα P t λ  
is the vector of partial derivatives of  with respect to each component of ​w​. (2) has two majorP∇w k P t  

advantages to the prototypical supervised-learning update procedure given in Equation 2: it runs iteratively 
rather than waiting until the final value is realized; and it allows for significantly lower memory usage, 
since past values of  don’t need to be maintained. Sutton’s given experiment used these equations toP∇w k  
solve for reward probabilities in a bounded random-walk problem, described below. 
 

II. M​ETHODS 
    Bounded random-walk is a problem containing a sequence of ​n ​linear states with bi-directional edges 
between each neighboring state (1 ↔ 2 ↔ … ↔ ​n​). The states on each end -- that is to say, state 1 and state 
n​ -- are absorbing states, where the far state (state ​n​) is the state that we measure probability of access 
against. Since Figure 2 shows a 7-state problem example, the experiments were assumed to be likewise, 
though the size of the walk is not technically stated in the article. An example walk sequence is: [4, 3, 4, 5, 
6, 7], which ends in the final state of 7. Since state 7 is already in its absorbing state, its probability is by 
definition 1. Likewise, since state 1 is an absorbing state, but not the “desired” state, its probability is 0. 
Trivially, the probability of reaching the desired state is  for each state ​i​. In these experiments, the goali−1

n−1  
was to predict the probabilities for each position of a bounded random walk ending in the desired absorbing 
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state, when presented with a set of training data. 
 
    The experiments described in Section 3.2 were duplicated as closely as possible to Sutton’s written 
descriptions in a Python 2.7 script. 100 sets of 10 sequences of random moves were randomly generated to 
serve as training data. Two experiments were described: 

● Experiment 1 - ​Batch Learning. ​For any small α, 
and several ​λ​ between 0 and 1, each set of sequences was 
repeatedly presented, accumulating ​Δw​ between sequences 
and only applying it to ​w​ at the end of the set. At the end 
of each set, ​Δw​ was reset to 0. The sets were presented 
continually until ​w​ converges. 

● Experiment 2 - ​On-Line Learning. ​For several α 
between 0 and 0.6, and several ​λ​ values between 0 and 1, 
each set was presented exactly once, this time immediately 
applying ​Δw​ to ​w​ after each sequence. At the end of each 
sequence, ​Δw​ was reset to 0. Instead of repeatedly 
presenting sets until convergence, each set was presented 
exactly once. 
 

III. R​ESULTS 
   Accuracy was evaluated by calculating the average 
root-mean-squared error (RMSE) between the actual 
results and the optimal values for each set. The lower the 
error, the more accurate the results. Each experiment was 
performed and then graphed, on the left, corresponding to 
Sutton’s Figures 3-5. 
 
    Experiment 1. ​Average error after repeated set 
presentations. These results mirror Sutton’s Figure 3 
nearly perfectly, with one exception: all error values were 
approximately 40% lower in our implementation. 
 
    Experiment 2. ​Average error after experiencing a set 
once. These results mostly resemble Sutton’s Figure 4. 
Overall error was again slightly decreased. In addition, 
λ=1 increased linearly, and therefore more slowly than the 
original article’s low exponential rate of increase. 
 
    Experiment 2, Part 2. ​Average error at best α value 
after experiencing a set once. This shape very closely 
matched Sutton’s Figure 5. Yet again, error was 
consistently slightly lower. 

 
    ​Analysis. ​The difference in data values were within ​p ≤ 0.05​, and therefore reproducibility was 
confirmed. 
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IV. D​ISCUSSION 
    As seen in the previous section, the original article is generally reproducible, and concepts are clearly 
mirrored between the original and reproduction. 
 
    The biggest difference in results was the consistently lower general error values across the board: this 
was likely due to bit-level accuracy. When the original article was written in 1988, the experiments were 
likely implemented using a 16- or 32-bit system, in contrast to our more accurate 64-bit system. Due to our 
improved ability to maintain higher precision digits than in the past, our inherent error in numeric storage 
was lower. In addition, modern-day compilers are slightly more efficient than the optimizers of the late 
‘80s. 
 
    The other difference of note was that of Figure 4’s λ=1 line. It’s worth noting that as λ increases, it likely 
will be overfitting to the training data and performing more poorly on test data. One can see this in action in 
the concave shape of Figure 5: too low of a λ value means that learning isn’t happening properly, but too 
high of a λ value means that it is overfitting. The large-scale differences in the highest level of overfitting, 
λ=1 for example, therefore, were likely differences in compiler optimization. 
 
    Variance between the randomly generated datasets likely accounted for the remaining slight differences 
between the graphs. 
 
    The largest pitfall in implementation was that of lacking numeric details in the article. No seed for 
generation of the training dataset was given, which caused a high degree of potential variability in the 
training dataset, and hence, a high degree of potential difference between the original and replication 
articles. In addition, the number of states was not explicitly defined, so 7 was assumed, due to it being used 
in Figure 2. It’s quite possible that the number of states used in Sutton’s experiment was actually different, 
which would cause a great degree of variability. While Sutton correctly noted that any sufficiently small 
alpha value would converge for Experiment 1, he did not define “small”, which required some 
trial-and-error to find; in practice, any number ≤ approximately 0.05 seemed to work. Sutton defined 
convergence as “no longer producing significant changes”, which could mean just about any small number. 
We picked 1⋅10​-6​ -- with a convergence number this low, the difference between small values was more or 
less negligible. It is possible that the original article could have used a lower convergence number, which 
would have caused slightly different results. 
 


